Istituzioni di Geometria Superiore

Istituzioni di Geometria Superiore

Crediti

9

Propedeuticità

Nessuna.

Settore scientifico-disciplinare

MAT/03 Geometria.

Modalità dell’esame

Prova orale.

Obiettivi
formativi

L’obiettivo del corso è fornire una introduzione alla geometria differenziale, algebrica e alla topologia algebrica. Si discuteranno i risultati più importanti in questi tre campi e si illustreranno le principali tecniche di dimostrazione e di risoluzione dei problemi.

Programma

Geometria differenziale. Varietà topologiche e differenziabili. Vettori tangenti. Applicazioni differenziabili: diffeomorfismi, rivestimenti, immersioni, sommersioni ed embedding. Funzioni di troncatura e partizioni dell’unità. Sottovarietà. Campi vettoriali. Curve integrali e flusso di un campo vettoriale. Fibrati vettoriali, sezioni e morfismi di fibrati. Riferimenti locali. Il fibrato cotangente. Integrali di linea. Tensori e calcolo tensoriale. Forme differenziali, orientabilità e integrazione su varietà. Complessi di R-moduli e loro coomologia, prime proprietà. Coomologia di de Rham. Lemma di Poincaré. Successione di Mayer- Vietoris. Coomologia delle sfere. Teorema della sfera irsuta. Teorema dei punti fissi di Brouwer.
Geometria algebrica. Spazio affine e chiusi algebrici. Topologia di Zariski. Anelli Noetheriani e teorema della base. Lemma di Gauss e anelli fattoriali. Teorema degli zeri. Curve piane. Punti regolari e retta tangente ad una curva. Molteplicità di una curva in un punto. Frazioni e anelli locali. Espressione asintotica della molteplicità. Molteplicità d’intersezione di due curve piane in un punto. Curve nel piano proiettivo. Teorema di Bézout.
Topologia algebrica. Categorie, funtori e trasformazioni naturali. La categoria omotopica. Retratti per deformazione e spazi contraibili. Gruppi abeliani liberi. Richiami su spazi affini e celle convesse. Catene singolari e loro omologia. Omologia e connessione per archi. Complessi di catene. Omomorfismo di connessione. Teorema Fondamentale dell’algebra omologica. Cenni su: invarianza omotopica dell’omologia, invarianza omologica dell’omotopia, teorema di escissione, teorema di Mayer-Vietoris.

Risultati dell’apprendimento
attesi

Al termine dell’insegnamento, lo studente deve dimostrare di

  • conoscere e comprendere gli elementi fondamentali di base di tutti i capitoli della geometria superiore (differenziale, algebrica, combinatoria e topologica) nonché aver acquisito il linguaggio della geometria superiore;
  • saper applicare le conoscenze acquisite allo studio di esempi concreti e utilizzarle per la risoluzione di esercizi;
  • saper comunicare in maniera chiara, rigorosa ed efficace idee e soluzioni a interlocutori specialisti e non specialisti;
  • saper individuare i metodi più appropriati per analizzare e risolvere un problema inerente gli argomenti del corso e interpretare correttamente i risultati.

Risultati di apprendimento
che si intende verificare

Conoscenze e competenze acquisite sui temi del corso, la capacità di esposizione e proprietà di linguaggio dello studente, l’abilità nell’applicare le conoscenze acquisite alla soluzione di semplici problemi, la capacità di integrare una discussione con esempi e controesempi, la padronanza degli strumenti matematici utilizzati nel corso.